Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila.
نویسندگان
چکیده
Previous studies suggest that the vesicular cysteine-string protein (CSP) may modulate presynaptic Ca(2+) channel activity in fast neurotransmitter release. To test this hypothesis, we analyzed the dynamics of presynaptic Ca(2+) ion influx with the Ca(2+) indicator fluo-4 AM at csp mutant neuromuscular junctions of Drosophila. From 24 to 30 degrees C, stimulus-evoked, relative presynaptic Ca(2+) signals were increasingly larger in csp mutant boutons than in controls. Above 30 degrees C, Ca(2+) signals declined and were similar to controls at 34 degrees C. A prolonged decay of Ca(2+) signals in mutant boutons at high temperatures indicated abnormally slow Ca(2+) clearance. Cytosolic Ca(2+) at rest was determined with the ratiometric Ca(2+) indicator fura-2 AM and was similar in mutant and control boutons at 24 degrees C but higher in mutant boutons at 34 degrees C. Despite larger Ca(2+) signals in mutant boutons, evoked neurotransmitter release was always reduced in csp mutants and exhibited pronounced facilitation. Thus, a lack of Ca(2+) entry cannot explain the reduction of neurotransmitter release in csp mutants. At all temperatures tested, raising extracellular Ca(2+) increased transmitter release elicited by single stimuli in csp mutants. Collectively, these data suggest multiple functions for CSP at synaptic terminals. Increased Ca(2+) signals coupled with reduced release suggest a direct function of CSP in exocytosis downstream from Ca(2+) entry. Because the reduction of evoked release in csp mutants is counteracted by increased Ca(2+) levels, we suggest that CSP primarily increases the Ca(2+) sensitivity of the exocytotic machinery.
منابع مشابه
Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin.
Cysteine-string proteins (CSPs) are associated with secretory vesicles and critical for regulated neurotransmitter release and peptide exocytosis. At nerve terminals, CSPs have been implicated in the mediation of neurotransmitter exocytosis by modulating presynaptic calcium channels; however, studies of CSPs in peptidergic secretion suggest a direct role in exocytosis independent of calcium tra...
متن کاملDrosophila Hsc70-4 Is Critical for Neurotransmitter Exocytosis In Vivo
Previous in vitro studies of cysteine-string protein (CSP) imply a potential role for the clathrin-uncoating ATPase Hsc70 in exocytosis. We show that hypomorphic mutations in Drosophila Hsc70-4 (Hsc4) impair nerve-evoked neurotransmitter release, but not synaptic vesicle recycling in vivo. The loss of release can be restored by increasing external or internal Ca(2+) and is caused by a reduced C...
متن کاملCysteine string protein functions directly in regulated exocytosis.
Cysteine string protein (Csp) is essential for neurotransmitter release in Drosophila. It has been suggested that Csp functions by regulating the activity of presynaptic Ca2+ channels, thus controlling exocytosis. We have examined the effect of overexpressing Csp1 in PC12 cells, a neuroendocrine cell line. PC12 cell clones overexpressing Csp1 did not show any changes in morphology, granule numb...
متن کاملCysteine-string protein: the chaperone at the synapse.
Cysteine-string protein (Csp) is a major synaptic vesicle and secretory granule protein first discovered in Drosophila and Torpedo. Csps were subsequently identified from Xenopus, Caenorhabditis elegans, and mammalian species. It is clear from the study of a null mutant in Drosophila that Csp is required for viability of the organism and that it has a key role in neurotransmitter release. In ad...
متن کاملEvidence that cysteine string proteins regulate an early step in the Ca2+-dependent secretion of neurotransmitter at Drosophila neuromuscular junctions.
Previous work indicated that the temperature-dependent block of synaptic transmission in cysteine string protein (csp) mutants of Drosophila was attributable to a failure of nerve impulses to trigger transmitter release. The current investigations were undertaken to resolve in more detail the mechanism of this transmission deficit. Our studies reveal that the spider venom toxin alpha-latrotoxin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2000